Surname
Other Names

Centre Number

Candidate Number
0

GCSE

3430UB0-1

S19-3430UB0-1

WEDNESDAY, 12 JUNE 2019 - MORNING

SCIENCE (Double Award)

Unit 2: CHEMISTRY 1
 HIGHER TIER

1 hour 15 minutes

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	8	
2.	7	
3.	8	
4.	9	
5.	5	
6.	6	
7.	9	
8.	8	
Total	60	

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
Question 6 is a quality of extended response (QER) question where your writing skills will be assessed.
The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.				
1. (a)	The table gives information about some elements.			
	Element	Electronic structure	Group	Period
	oxygen	2,6	6	2
	chlorine		7	3
		2,8,5	5	3
	potassium	2,8,8,1	1	\ldots

Complete the table.
(b) The flow chart shows some of the reactions of potassium.

(i) State one observation you would make when potassium reacts with water.
(ii) Apart from wearing gloves and safety goggles, give one safety precaution that should be taken when adding potassium to water.
\qquad
\qquad
2. (a) The Earth's early atmosphere around 4000 million years ago contained mainly carbon dioxide and water vapour produced by volcanoes.
(i) Explain why the large percentage of water vapour in the Earth's atmosphere decreased over geological time.
(ii) Give two reasons why the percentage of carbon dioxide in the Earth's atmosphere has decreased over geological time.
\qquad
\qquad
\qquad
(b) During the last 250 years the percentage of carbon dioxide in the Earth's atmosphere has increased from 0.03% to 0.04%. This has led to increased global warming. Give one reason for this increase and explain why global warming is a cause for concern.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Ammonia present in the Earth's early atmosphere reacted with oxygen to produce nitrogen and water vapour. Complete the balancing of the symbol equation for this reaction.

3. Some Year 10 students were given three unknown white solids - \mathbf{A}, \mathbf{B} and \mathbf{C}.

They carried out a series of flame tests and silver nitrate tests to identify the solids.
Their results are shown in the table.

	Observations	
Solid	Flame test	Silver nitrate test
A	apple-green flame	cream precipitate
B	red flame	white precipitate
C	yellow flame	yellow precipitate

(a) Name solids A, B and C.

A
B
C
(b) Complete and balance the symbol equation for the reaction between magnesium chloride and silver nitrate.

(c) 0.103 g of silver nitrate, AgNO_{3}, was used to make up a solution.

Calculate the number of moles of silver nitrate in this mass. Give your answer in standard form.

$$
A_{\mathrm{r}}(\mathrm{Ag})=108 \quad A_{\mathrm{r}}(\mathrm{~N})=14 \quad A_{\mathrm{r}}(\mathrm{O})=16
$$

4. A student investigates the solubility of ammonium chloride by adding different masses to 10 g of water.

He uses the apparatus shown.

10 g of water is placed in a boiling tube and 3.0 g of ammonium chloride is added.
The tube is heated until all the solid dissolves.
The tube is allowed to cool.
The temperature at which solid ammonium chloride first appears is recorded.
The experiment is repeated using different masses of ammonium chloride.
The results are shown in the table.

Mass of ammonium chloride in 10 g of water (g)	3.0	3.3	4.1	5.2	5.9	6.6
Temperature at which solid ammonium chloride first appears $\left({ }^{\circ} \mathrm{C}\right)$	4	10	30	52	68	80

(a) What practical problem is the student likely to come across in finding the first two results? Suggest how this problem might be overcome.
\qquad
\qquad
\qquad
(b) (i) On the grid below, plot the temperature at which solid ammonium chloride first appears against the mass of ammonium chloride in 10 g of water. Draw a suitable line.

(ii) The student is given a boiling tube containing 5.0 g of ammonium chloride in 10 g of water. He stirs the ammonium chloride in the water and heats it to a temperature of $45^{\circ} \mathrm{C}$.

State whether all the ammonium chloride dissolves. Give a reason for your answer.
(c) The student is asked to use a different method to find the exact solubility of another compound in water at room temperature. He knows that it has a value of approximately 7 g per 100 g of water at this temperature.

He is given a 5.0 g sample of the compound and common laboratory equipment but no heating apparatus.

Describe how he would carry out his method and how he would find the solubility.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

5. (a) A bottle contains a mixture of liquids \mathbf{E} and \mathbf{F}. Liquid \mathbf{E} has a boiling point of $57^{\circ} \mathrm{C}$ and liquid \mathbf{F} has a boiling point of $95^{\circ} \mathrm{C}$.

Describe the process of distillation and explain why it can be used to separate these liquids.
(b) One molecule of liquid \mathbf{E} contains two oxygen atoms. The percentage by mass of oxygen in liquid \mathbf{E} is 43.2%.

Use the following equation to calculate the relative molecular mass $\left(M_{r}\right)$ of liquid \mathbf{E}. [2]

$$
\begin{gathered}
\frac{\text { mass of oxygen }}{M_{r}} \times 100=43.2 \\
A_{r}(\mathrm{O})=16
\end{gathered}
$$

$$
M_{r}=
$$

\qquad
6. Explain how the processes of boiling and adding washing soda remove hardness from water. Include equations in your answer.
[6 QER]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7. (a) (i) Chlorine is a non-metal found in Group 7 of the Periodic Table. When it is bubbled into a solution of potassium iodide there is a colour change from pale green to brown. Explain why this reaction occurs.
\qquad
\qquad
\qquad
(ii) Write the balanced symbol equation for the reaction between chlorine and potassium iodide.
(b) The symbol equation for the reaction between iron and chlorine is as follows.

$$
2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{FeCl}_{3}
$$

Calculate the mass of chlorine needed to react with 1.32 g of iron.

$$
A_{\mathrm{r}}(\mathrm{Fe})=56 \quad A_{\mathrm{r}}(\mathrm{Cl})=35.5
$$

(c) (i) Under certain conditions, Group 7 elements will react with each other to produce new compounds.

When chlorine is reacted with bromine, chlorine tribromide is made.
Balance the symbol equation for this reaction.

(ii) A chemist calculated that if she reacted 7.00 g of chlorine with an excess of bromine, the theoretical mass of chlorine tribromide produced is 27.55 g .

However, when she carried out the experiment using 7.00 g of chlorine the mass of chlorine tribromide obtained was 21.34 g .

Calculate the percentage yield of chlorine tribromide.
\qquad
8. Hydrogen peroxide solution, $\mathrm{H}_{2} \mathrm{O}_{2}$, is used in commercial stain removers.

A GCSE class investigated how effective four stain removers are at removing stains. Stain removers $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} contain different concentrations of hydrogen peroxide.

The students tested how effective each one is at removing an identical oil stain from four towels.
Their findings are outlined below.

Stain remover A	
Working temperature	$=50^{\circ} \mathrm{C}$
Cost per $100 \mathrm{~cm}^{3}$	$=99 \mathrm{p}$
Time to remove stain	$=40 \mathrm{~min}$
Volume needed	$=20 \mathrm{~cm}^{3}$

Stain remover B	
Working temperature	$=30^{\circ} \mathrm{C}$
Cost per $100 \mathrm{~cm}^{3}$	$=£ 1.99$
Time to remove stain	$=40 \mathrm{~min}$
Volume needed	$=10 \mathrm{~cm}^{3}$

Stain remover C	
Working temperature	$=20^{\circ} \mathrm{C}$
Cost per $100 \mathrm{~cm}^{3}$	$=£ 2.49$
Time to remove stain	$=20 \mathrm{~min}$
Volume needed	$=5 \mathrm{~cm}^{3}$

Stain remover D	
Working temperature	$=30^{\circ} \mathrm{C}$
Cost per $100 \mathrm{~cm}^{3}$	$=£ 1.49$
Time to remove stain	$=30 \mathrm{~min}$
Volume needed	$=10 \mathrm{~cm}^{3}$

(a) In carrying out this investigation, which variables were kept the same in order to get valid results? Tick (\checkmark) the correct answer.
type of oil used, towel material and volume of hydrogen peroxide

type of oil used, towel material and temperature of stain remover

type of oil used and towel material

type of oil used, towel material and cost of stain remover

(b) Tick (\mathcal{J}) all of the statements which could explain why stain remover \mathbf{A} has to be heated to $50^{\circ} \mathrm{C}$ before it removes the stain.
it is the cheapest stain remover \square
it is heat resistant \square
it has a low concentration of hydrogen peroxide

it takes a long time to work \square
(c) The students found that stain removers \mathbf{B} and \mathbf{D} used the same volume and worked best at the same temperature.

Assuming that they have the same hydrogen peroxide concentration, suggest a possible reason why \mathbf{D} removes the stain more quickly than \mathbf{B}.
(d) One student went on to investigate the decomposition of hydrogen peroxide.

The equation for the reaction is as follows.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

The student investigated the effect of changing the concentration of the hydrogen peroxide solution on the rate of the reaction. She used manganese dioxide as a catalyst in each experiment.

This is the method she used.

- Pour $50 \mathrm{~cm}^{3}$ of hydrogen peroxide solution of concentration \mathbf{R} into a conical flask on a digital balance.
- Add 1 g of catalyst and place some cotton wool loosely in the neck of the flask. Record the balance reading and immediately start a stopwatch.
- Record the balance reading every minute until the mass no longer changes.
- Carry out the experiment twice more using hydrogen peroxide of different concentrations, \mathbf{S} and \mathbf{T}.

Her results are plotted on the grid below.

FORMULAE FOR SOME COMMON IONS			
POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
aluminium	Al^{3+}	bromide	Br^{-}
ammonium	$\mathrm{NH}_{4}{ }^{+}$	carbonate	$\mathrm{CO}_{3}{ }^{2-}$
barium	Ba^{2+}	chloride	Cl^{-}
calcium	Ca^{2+}	fluoride	F^{-}
copper(II)	Cu^{2+}	hydroxide	OH^{-}
hydrogen	H^{+}	iodide	I^{-}
iron(II)	Fe^{2+}	nitrate	$\mathrm{NO}_{3}{ }^{-}$
iron(III)	Fe^{3+}	oxide	O^{2-}
lithium	Li^{+}	sulfate	$\mathrm{SO}_{4}{ }^{\text {-- }}$
magnesium	Mg^{2+}		
nickel	$\mathrm{Ni}^{\mathbf{2 +}}$		
potassium	K^{+}		
silver	Ag^{+}		
sodium	Na^{+}		
zinc	Zn^{2+}		

THE PERIODIC TABLE

20
$\begin{array}{lllllll}\text { Group } & 3 & 4 & 5 & 6 & 7 & 0\end{array}$

			ゅ亠		
		呙す。			
	\cdots	への离		$\stackrel{\sim}{\sim}$	
	$\pm \boldsymbol{Z}$				－ $\bar{\sim}$
		$\stackrel{\sim}{\sim}$ ¢ $\stackrel{\text { ¢ }}{\text { ¢ }}$			
	$=\infty$ ¢ ¢ ¢ ¢ ¢		R		

